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(1) Of the 16 general rank-4 Bravais classes, 14 
have lattices that are simply the sum of a rank-3 
crystallographic lattice and a one-dimensional lattice 
that is independently invariant under all point-group 
operations.* As a result, the space groups in all these 
cases can be trivially inferred from the Fourier-space 
forms of the ordinary rank-3 space groups, exactly as 
we have done above for the hexagonal and trigonal 
systems. The (3+ 1) settings of these space groups 
used to describe modulated crystals then emerge 
straightforwardly by the application of a more 
limited set of scale-equivalence transformations to 
the general gauge-equivalence classes. 

(2) By working with a smaller number of Bravais 
classes (16 instead of the 24 settings), one avoids a 
considerable redundancy of both calculation and 
description. 

We emphasize the generality of our approach. By 
first focusing on only the gauge-equivalence classes 
of phase functions, we give the results of the non- 
trivial part of the calculation in a form that applies 
to arbitrary quasiperiodic crystals of the appropriate 
symmetry and rank. By deferring to the end the 
book-keeping question of which space groups to 
further identify through scale equivalence, we retain 
the freedom to use whatever transformations are 
appropriate to the material of interest, making 
straightforward the treatment of materials even when 
they fail to fit neatly into any of the conventional 
categories (modulated crystals, intergrowth com- 
pounds, quasicrystals etc.) and allowing for a unified 
description of materials that might interpolate 
between quite different categories. As a further 
demonstration of the power of the more general 

* There are two exceptions, one in the monoclinic system and 
one in the orthorhombic system. A lattice of either type, however, 
can be viewed as the sum of two two-dimensional lattices, each 
independently invariant under the point-group operations leading 
to a similar simplification. 

approach, we discuss in a companion paper (Lifshitz 
& Mermin, 1994) the Bravais classes and space 
groups of hexagonal and trigonal quasiperiodic crys- 
tals of arbitrary finite rank. 

Whether one chooses to call the categories 
designed for modulated crystals superspace groups 
or different settings of general rank-4 space groups 
is, of course, a nomenclatural question; but that 
these categories are more easily used and derived 
from the latter point of view seems to us indispu- 
table. 

This work was supported by the National Science 
Foundation through grants DMR 89-20979 and 
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Abstract 

To demonstrate the power of the Fourier-space 
approach to crystallography, the Bravais classes and 
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space groups of hexagonal and trigonal quasiperio- 
dic crystals are derived for lattices of arbitrary finite 
rank. The specification of the space groups for each 
Bravais class is given by an elementary extension of 
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the rank-4 case. The conventional classification of 
incommensurately modulated hexagonal and trigo- 
nal crystals, previously derived using the superspace 
approach for Bravais classes up to rank (3+3)  
[Janner, Janssen & de Wolff (1993). Acta Cryst. A39, 
658-666] and for superspace groups of rank (3 + 1) 
[de Wolff, Janssen & Janner (1981). Acta Cryst. A37, 
625-636], is easily extracted from the general classi- 
fication for modulations of any finite rank. 

I. Introduction 

We show here that a modest extension of the analysis 
in the preceding paper* yields the Bravais classes and 
space groups for trlgonal and hexagonal quasiperio- 
dic crystals of arbitrary finite rank. We describe the 
rank-n Bravais classes in §II and derive them in the 
Appendix. We derive the space groups associated 
with each Bravais class in §III. 

The possible subdivisions of space groups and 
Bravais classes into settings that identify different 
sublatticcs of wave vectors as lattices of main reflec- 
tions are much more extensive than in the rank-4 
case because there are no longer any a priori grounds 
for restricting lattices of main reflections to rank-3 
sublattices. If, for example, we wished to consider 
the categories of rank-5 quasiperiodic crystals with 
weak satellites requiring two additional vectors for 
their indexing, these would be given by the (5 + 2) 
settings of the general rank-7 space groups. It is 
straightforward to extract these settings for any case 
of interest. We illustrate how to do this in § IV for the 
important case of rank-3 lattices of main reflections, 
recovering the 'Bravais classes for incommensurate 
crystal phases' of Janner, Janssen & de Wolff (1983) 
(henceforth JJdW) for ranks 4 to 6 and deriving their 
generalizations to any arbitrary finite rank. We also 
derive the (3 + d) settings of the space groups, 
extending the tabulated 'superspace groups for 
incommensurate crystal structures with a one- 
dimensional modulation'  of de Wolff, Janssen & 
Janner (1981) for the trigonal and hexagonal crystal 
systems to modulations of any finite rank. 

II. Bravais classes 

We follow the three-dimensional geometric approach 
used in LM, describing the Bravais classes in terms 
of a two-dimensional horizontal sublattice H of wave 
vectors perpendicular to the threefold (or sixfold) 
axis and in terms of stacking vectors. We first 
describe the Bravais classes of two-dimensional lat- 

* Lifshitz & Mermin (1994, hereinafter LM), which treats only 
the rank-4 case. We assume the reader is familiar with the 
concepts of Fourier-space crystallography described in that paper. 

tices with sixfold symmetry that can be horizontal 
sublattices of the full three-dimensional lattice. These 
Bravais classes are clearly distinct if we follow 
Mermin & Lifshitz (1992) in taking classes to be 
distinct if it is impossible to interpolate between them 
through a sequence of lattices all with the same point 
group and rank. In the Appendix (parts A and B), 
we prove that there are no additional Bravais classes. 

It is always possible to take the two-dimensional 
horizontal sublattice H to be primitively generated 
by pairs of wave vectors a; and be, of equal length, 
separated by 120 °. Each such pair generates a sixfold 
star of vectors given by _ ai, -+ be and _+ (a, + b~). 

Symmetry distinguishes two ways of orienting the 
stars: 

(a) If every star has the same orientation or if each 
star has one of two orientations separated by 30 °, 
then the two-dimensional horizontal sublattice is 
invariant under the full three-dimensional point 
group 6/mmm. We say that such sublattices are of 
type [i,j], where i and j are even integers giving the 
number of primitive vectors in the plane generating 
stars of each orientation. The rank of the horizontal 
sublattice is then i + j. We include a single set of star 
directions in the case [i,0]. 

(b) If there is at least one pair of stars separated by 
an angle of less than 30 °, then the symmetry of the 
two-dimensional sublattice is reduced to 6ira. One 
can interpolate between any two such sublattices 
having the same number of stars without any change 
of symmetry. Consequently, any relation between the 
orientations of any other stars in the family is acci- 
dental. The types of sublattices are now distinguished 
only by the total number of primitive vectors in the 
plane. We denote horizontal sublattices of this type 
by the symbol [i], with i an even number greater than 
two, giving the rank of the sublattice. 

Three-dimensional lattices with horizontal sublat- 
tices of distinct types obviously belong to distinct 
Bravais classes. Further subdivisions of the Bravais 
classes for the full lattice are determined by the 
additional primitive generating vectors with nonzero 
vertical components - the stacking vectors. 

As in the periodic (rank-3) case, the stacking 
vectors can be either vertical or staggered. We show 
in part C of the Appendix that primitive generating 
vectors can always be chosen so that the horizontal 
shift of a staggered stacking vector has the form 

he = ~ae + ~bi, (1) 

where a~ and be are one of the pairs of primitive 
generators of the horizontal sublattice. 

If all stacking vectors are vertical, the point group 
of the full lattice remains that of the two-dimensional 
sublattice: 6/mmm if the two-dimensional sublattice 
is of type [i,j] and 6ira if it is of type [i]. The full 
Bravais class is then determined by the type of the 
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horizontal sublattice and the total number of vertical 
stacking vectors. 

If there are staggered stacking vectors, then, as in 
the rank-4 case, one requires at most one for each 
pair of horizontal generating vectors. When the two- 
dimensional sublattice is of the type [i,j], the exis- 
tence of just one staggered stacking vector reduces 
the rotational symmetry to threefold and removes 
one of the mirrors, reducing the point group of the 
full lattice to 3m. The vertical mirror that remains 
still provides enough symmetry to maintain the stars 
in just two orientations because an infinitesimal 
rotation of any one star would further reduce the 
symmetry to 3. The 3m symmetry is preserved by 
additional stacking vectors, provided their horizontal 
shifts are all associated through (1) with stars of the 
same orientation. If, however, there are two stag- 
gered vectors with horizontal shifts associated with 
stars of different orientations, then the point group is 
reduced to 3 and there are no longer symmetry-based 
grounds for the stars to have just two orientations. 
Thus, when two-dimensional lattices of the type [i,j] 
are stacked, staggered stacking vectors can be associ- 
ated with only one of the groups of stars. If an 
attempt is made to associate staggered vectors with 
stars from both groups, then the two-dimensional 
sublattice [i,j] will be unstable against a deformation 
to type [i + j]. 

In summary (see Table 1), the Bravais classes of 
the hexagonal and trigonal crystals of arbitrary finite 
rank are characterized as follows. 

(a) Horizontal sublattice of  type [i,j]. The horizon- 
tal primitive vectors give stars of no more than two 
orientations, 30 ° apart. We identify the Bravais class 
by the symbol [i,j]S ~ V ~, where i and j are the (even) 
numbers of horizontal-sublattice generating vectors 
giving stars in each orientation and k and l are the 
numbers of staggered and vertical stacking vectors.* 
If there are no staggered stacking vectors, then we 
may take i_>j.t  If there are staggered stacking vec- 
tors, then all must be associated with stars of the 
same orientation and we adopt the convention that 
these stars are given by the first group of i horizontal 
generating vectors in the square brackets (so that k 
<_ i/2). The symmetry of the full lattice is 6/mmm if 
staggered stacking vectors are absent and 3m if they 
are present. The rank is n = i + j + k + l. 

(b) Horizontal lattice of  type [i]. The horizontal 
primitive vectors give stars with unrelated orienta- 
tions (so there must be at least two stars). We 
identify the Bravais class by the symbol [i]SkV t, 
where i___ 4 is the (even) number of horizontal- 
sublattice generating vectors, k <_ i/2 is the number of 

* If k or l are 0, we omit the S or V from the symbol. 
t The symbol [i,j] is omitted in the discussion in LM of the 

rank-3 and rank-4 cases because it is always [2,0]. 

Table 1. The hexagonal and trigonal Bravais classes of  
arbitrary finite rank and their point groups 

The notation is explained in §II. When the horizontal sublattice is 
of type [i,j], our convention is that i is associated with the 
staggered stacking vectors if there are any, and i---j otherwise. If 
there are no staggered stacking vectors and the horizontal sublat- 
tice is of type [i,j], then the lattice has the full hexagonal point 
group 6/mmm. The existence of staggered stacking vectors reduces 
the rotational symmetry to threefold and removes one of the 
vertical mirrors. Horizontal sublattices of type [i] have no vertical 
mirror symmetry. 

Brav~s class [ i , j ] skv  * [ i ]skv t 

No staggered 

stacking vectors 

(k =0)  

At least one staggered 

stacking vector 

(k > 0) 

6/mmm 

~3m 

6/m 

staggered stacking vectors and l is the number of 
vertical stacking vectors. The symmetry of the full 
lattice is 6/m if there are not any staggered stacking 
vectors and 3 if there are. The rank is n = i + k + l. 

The enumeration of these possibilities for any 
given rank n is straightforward and is illustrated in 
the first two columns of Table 2, which lists the 
trigonal and hexagonal Bravais classes from rank 3 
to rank 7. 

III. Space groups 

1. Gauge-equivalence classes of  phase functions 

As in the rank-4 case, the gauge-equivalence 
classes in the general case can be read directly from 
Tables 3 and 4 of LM which give the gauge- 
equivalence classes in the rank-3 periodic case. (1) As 
in the periodic case, a gauge can be picked in which 
the phases at all horizontal lattice-generating vectors 
are zero. (2) Each staggered vector and its corre- 
sponding pair of generators in the horizontal plane 
form an independent rank-3 trigonal R sublattice on 
which the phases are determined independently of 
their determination at the other lattice-generating 
vectors. Therefore, the phases at each staggered 
stacking vector can be taken directly from Table 4 of 
LM for the rank-3 R lattice. (3) The phases at all the 
vertical stacking vectors are determined indepen- 
dently of any of the other phases. They can therefore 
be taken directly from Table 3 of LM which gives the 
gauge-equivalence classes for the rank-3 hexagonal P 
lattice. 

The resulting tabulation of gauge-equivalence 
classes is given in parts I of Tables 3-5 of this paper. 
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T a b l e  2. An explicit catalog o f  the Bravais classes o f  trigonal and hexagonal lattices for ranks 3 - 7  and their 
(3 + d) settings 

The table of Bravais classes for arbitrary rank n is constructed by simply enumerating the cases in §II for which i + j  + k + 1 = n. The 
(3 + d) settings are found by applying the general rules of §IV. 1 and Table 6. The Bravais classes are grouped in the table by their rank 
and further subgrouped by the number of generating vectors in the horizontal sublattice (or, equivalently, by the number of 
incommensurate stacking vectors). The first column lists the Bravais classes using the notation [i,j]S ~ V t or [i]S ~ V ~ described in §II. The 
second column gives the point group of the lattices in each Bravais class according to the general rules of Table 1. The third column lists 
the possible (3 + d) settings useful in describing incommensurately modulated periodic crystals. The notation for the different settings is 
described in §IV. 1 and summarized in Table 6. The last column lists the same settings using the superspace notation of JJdW (1983) 
where they are characterized as '(3 ÷ d) Bravais classes' and listed up to rank 6. We have made the obvious generalization of the JJdW 
notation to rank 7 but do not recommend it. In LM, we used the symbols SV or R + 1 and VV or P ÷ 1 for the two rank-4 Bravais 
classes. 

B r avais 

Class 

[2,0]S[R] 

[2, 0]V[P] 

[2,o]sv 
[2, o]v~ 

[2, OISV 2 

[2,olv~ 
[4, O]S 

[4, O]V 

[2, 2]S 

[2,2]v 

[4]S 

[4]V 

[2, o ] s v  s 

[2, 0]V 4 

[4, O]S 2 

[4, O]SV 

[4, o]v ~ 

[2,~]sv 

[2,2]v~ 

[4]s~ 

[4]SV 

[4W ~ 

Point 

Group 

3m 

6/mmm 

3m 

6/mmm P 

~3m R, 

6/mmm P 

3m R, 

6/mmm P 

3m 

6/mmm 

6/m 

3 m  

6/mmm 

~m 

3m 

6/mrnrn 

~rn 

6/mmm 

6/rn 

(3+d)  JJd W 

Settings Symbol 

rank-3 

rank-4 

R, Ps !R3m(007), P 3 1 m ( ~ 7 )  ~007), P31m(~ ~ ~7) 

P6/mmm(O07) 

R, pS 

P 

R, pS 

P 

rank-5 

Ps. R3m(007,00v), P~lm(~7,  ~ 1 0 0 v )  

: P6/mmm(O07, OOv) 
i 

pS agm(aO0), Pglrn(c~a½) 

P6/mmm(aO0) 

R3m(aaO), P3ml(a0½)  

P6 /rnmm( aolO ) 

~(~o),  P~(.Z~) 
P6/m(a~O) 

rank-6 

R, Ps P~rn(O07, OOv, 006), - 1 1 P31m(~ $7, OOv, 000) 

P P6/mmm(O07, OOv, 000) 

R , ~  
R, Ps, 
pS, p 

P 

R, Ps, 
pS, p 

P 

R, PSs 

R, Ps, 
pS, p 

P 

R3m(a07), PSlrn(aa], !!7~3s , 

R~m(aO0, Off'/), P,31m(c~00, 1 1 ~ 'Y),  

Pglm(aa~,O07), P31rn(otaT) 

P6/mmm(~O~) 

R~m(,~,~0, 00"y), P~Xm(,~0, ~-'r~,3 , 

P~ml(,~0], 00"r), P~ml(,~0"y) 

P6/mmm(~) 
17 R~(~Z~), P~(~Z], ~ ) 

P~(otB0, 007), P~3(a~O, ~ ~ ~ 7 ) ,  

P3(aB½,007), P3(a~7)  

p6/m(~Zn) 
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Table 2. (cont.) 

Bravais Point (3+d)  JJdW 

Class Group Settings Symbol  
! i 

rank-7 
F 

[2, O]SV 4 ' 3m 

[2, O]V 5 

[4, O]S2V 

[4, O]SV ~ 

[4, O] V s 

[2,~]sv~ 

[2, 2]V s 

[4]sw 

[4]SV ~ 

[4]v ' 

[s,o]s 
[s,o]v 

[4,2]s 

[2,418 
[4, 2]V 

[6Is 
[s]v 

6/mmm 

~m 

~m 

6/mmm 

~m 

: 6/mmm 

6/m 

3m 

6/mmm 

$m 

3m 

6/mmm 

6/m 

R, 

Ps 

P 

R, P~ , 

Ps 

R, Ps, 
pS, p 

p. 

R, Ps, 
pS, p 

P 

R, pS 

Ps 

R, Ps, 
pS p 

P 

R, pS 

P 

R, P1 s, 

R, pS 

Px, P~ 

R, pS 

P 

RSm( O07, OOv, 000, OOtt), 

P31m( ½½% OOv, OOO, OOp) 

P6/mmm(O0"7, OOv, 008, O01a) 

R3m(aOT,0Ov), P31m(a0½, 11~7, 00v), 

P31m(aa7, x 1 ~ )  

R3m(aOO, 007,00v), P31m(aO0, ~3',1 a OOv), 

PT31m(aa½,007, OOv), P31m(aa7, OOv) 

P6/mmm(aO'7, 0Ov) 

R3m(aaO, 003', 00v), P~lm(cm0, x x ~7, 00v), 

P3ml(a0~, 00% 00v), P3ml(a07, OOv) 

P6/mmm(aa7, OOv) 

R~(.Z~, oo~), p~(aZ_~, 1 1 ~ ,  oov), 
X ~ )  

R~(~o, oo-y, oov), P~(~o,  l~.y, oo~,), 
p~(a~l, 00% OOv), P3(a~7, OOv) 

P6/m(a~7,0Ov) 

P~m(a00,/300), P$lm(aa½,1300) 

P6/mmm(aO0,~O0) 

P~m(a00,13/30), P$lm(aa½, ~130), 

P,]ml(a0½,/3/30) 

R~m(aaO, ~flO), P~ml(aO~,1300) 

P6 / mmrn( aO0,13130 ), P6 / mrnm( aaO, fl ~O ) 

R~(a/30, ~fe0), P3(a/30, 6,~-) 

P6/m(a~0,6,O) 

89 

For each Bravais class, one needs to consider only 
the point groups that are subgroups of the point 
group of the lattices in the class, as given in Table 1. 

2. Identification of gauge-equivalence classes under 
scale equivalence 

As in our treatment of the rank-4 case, we con- 
sider integral linear combinations of the stacking 
vectors with determinant --. 1 that give alternative 
sets of stacking vectors differing from the original set 
only by rescalings of their vertical components. 

Gauge-inequivalent phase functions that differ only 
by these transformations belong in the same scale- 
equivalence class. 

We make these further identifications by building 
up the general transformations out of transfor- 
mations of pairs of stacking vectors, using the same 
2 x 2 matrices of determinant __. 1 used in the rank-4 
case in §VI of LM. There we found that, except for 
the point groups 6mm and 6/mmm, which we con- 
sider below, only one of the two stacking vectors 
need have nonzero phases, the phases associated with 
the other being reducible to zero by appropriate 
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T a b l e  3. Gauge-equivalence classes and space groups of  arbitrary finite rank in the hexagonal system and their 
settings for modulated periodic crystals 

The hexagonal point groups are compatible with lattices containing only vertical stacking vectors: Bravais classes of types [i,j]V ~ and 
[i] V ~. All point groups are compatible with Bravais classes of  type [i,j] W. If the Bravais class is [i] W, one need only consider the point 
groups 6/m, -6 and 6. 

The gauge-equivalence classes are given in part I of  the table. They are specified by a set of  phases: the values of a representative set of  
phase functions for the point-group generators at the primitive generating vectors of  the lattices. A gauge is used in which all phases 
unspecified in the table are zero. The possible nonzero phases are only at the vertical stacking vectors c ~ (a = 1 .../) and only associated 
with the sixfold rotation r or the vertical mirror m. These phases are taken directly from Table 3 of LM which gives the 
gauge-equivalence classes for the rank-3 hexagonal P lattice. 

Part II of  the table lists the space groups of arbitrary finite rank arrived at by identifying scale-equivalent gauge-equivalence classes. 
Again, only nonzero phases are given. Phases characterizing a given space group are on a horizontal row, enclosed in brackets when 
more than one phase is needed. (The absence of  such brackets in part I of  the table indicates that any selection of phases from each 
possible column gives a distinct gauge-equivalence class.) In all but the last case in the right-hand column, only a single stacking vector 
has nonzero phases. The nonzero phases describing hexagonal space groups of arbitrary rank are identical to those given in Table 5 of 
LM for the case of  rank 4, since all additional lattice-generating vectors can be assigned zero phases. 

Part III of  the table lists the different settings of the space groups in the modulated case, where one singles out a rank-3 sublattice of  
main reflections, which must be taken from one of the P settings (P~ or Pz). We take e ~ to be the generator of  the lattice of main 
reflections. All other stacking vectors describe satellite peaks. The settings are separated vertically into sets that correspond to settings of 
the general space groups listed in the same order in part II. All settings except for the last one in the right-hand column involve nonzero 
phases at only two stacking vectors, which are identical to the phases that specify the settings for rank 4. The last setting appears only in 
lattices with rank 5 or more. 

Parts II and III of  the table apply to lattices with more than one stacking vector. If a lattice has only a single stacking vector, then the 
space groups and the (3 +d)  settings are identical to the gauge-equivalence classes, as they are in the rank-3 case. In particular, 
enantiomorphic pairs of  space groups are distinct when there is only one stacking vector. 

G 

Phases - - -  - 

I. Gauge 

Equiva- 

lence 

Classes 

Phases • - -  • 

II. General 

R a n k - n  

Space 

Groups 

Phases - - -  - 

III. Settings 

of 

General 

Space 

Groups 

for 

Modul- 

a ted 

Crystals 

6 622 62m 6m2 6/m 6ram 6/mmm 

• ,-(,:~) *m(C o) ~(c o) ,x,,.(c ,~) ~,,.(c o) 
o o 
1 1 
2 2 

~r(C 1) ~ ( C  1) ~r(C 1) ~r(C 1) ~m(C 1) ~r(C 2) ~m(C 2) 

o [0  0 0]  

0 o 0]  

1 o ol  [o 
1 [½ ~ o o] 
1 1 O] [0  ~ 

~r(¢ 1) ~r(¢~ ~(C') ~m(C~ ~r(¢1) ~(¢~ ~(¢a) ~(¢1) ~(¢~ ~m(C~ ~(¢~ ~ (¢~  
[0 0] [0 0] [0 0] [0 0 0 0 

[~ o] 
2 1 [~ ~] 

1 [o ~] 

[~ ol 
[~ o] 
[o ~1 

[~ o] 
[o ~] 

[½ o] 
1 [o ~] 

[½ o] 
[o ½] 

o o] 

1 0 0 0 0 ]  [0  

1 o ol  [o o o ~ 

o o o o] 
[o o 1 , o o] 

, ' o o o] [o ~ 
, o ol  [½ o o ~ 

1 1 0 0 0 ]  

1 1 O] [0  0 0 ~ 

1 0 0 0 0 O] 

1 o o o ]  [o  o 
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Table 4. Gauge-equivalence classes and space groups of arbitrary finite rank & the trigonal system for lattices 
containing only vertical stacking vectors (Bravais classes of types [i,j]V t and [i]V t) and their settings for 

modulated periodic crystals 

All trigonal point groups are compatible with Bravais classes of type [i,j]V( If the Bravais class is [l]V I, one need only consider the 
point groups 3 and 3. The structure and conventions are the same as for Table 3. The nonzero phases describing these space groups and 
their P settings (P, or P2) for modulated periodic crystals are identical to those given in Table 6 of LM for the rank-4 case, since all 
additional lattice-generating vectors can be assigned zero phases. 
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linear transformations. In the case of arbitrary rank, 
we can make the same argument, picking one 
stacking vector and using it sequentially to form new 
linear combinations of each of the others at which all 
the phase functions are zero.* As a result, for all the 
point groups except 6ram and 6/mmm, the space 
groups for any number of stacking vectors are 
exactly the same as in the rank-4 case: the nonzero 
phases can be associated with a single stacking 
vector. Unless all stacking vectors are staggered, that 
single vector can be taken to be vertical and the 
phases are exactly as for the rank-3 periodic P lattice 
(Table 3 of LM), except for the simplifying identifi- 
cation of enantiomorphic pairs that exists when the 
rank exceeds 3. If all stacking vectors are staggered, 
then the phases at the stacking vector with nonzero 
phase are exactly as for the rank-3 periodic R lattice 
(Table 4 of LM). This is shown in parts II of Tables 
3-5 of this paper. 

It remains to consider the point groups 6ram and 
6/mmm. These allow only vertical stacking vectors 
and allow nonzero values for both 45r and 4~m. There 
are only three choices for the possible nonzero pairs 

* The procedure we followed in the rank-4 case works in exactly 
the same way even when applied to two staggered stacking 
vectors, a possibility that first arises in rank 6. 

of phases [@r,~m] at each stacking vector: [0~], [~0], 
and [~]. We can, therefore, reduce the maximum 
number of vectors with nonzero phases to three, by 
selecting one with each of the three types of phases 
and simply adding it to any other vector of that 
type.* If stacking vectors with all three types of 
phases are present, we can also reduce both phases at 
one of the remaining three to zero by adding to it 
the sum of the other two. To group the gauge- 
equivalence classes into space groups, we need there- 
fore consider only a pair of vertical stacking vectors 
with nonzero phases, just as in the rank-4 case. 
Therefore, for the remaining point groups, 6mm and 
6/mmm, the space groups for any number of stacking 
vectors are also exactly the same as in the rank-4 
case. The nonzero phases can be associated with a 
pair of vertical stacking vectors and are given in the 
column on the right of part II of Table 3. 

IV. Settings for the (3 + d) modulated case 

We stress that, in contrast to the rank-4 case, the 
(3 + d) settings are just one example of the settings in 
which one can display the general space groups, 

* The result is zero because phase arithmetic is modulo unity. 
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Table  5. Gauge-equivalence classes and space groups of  arbitrary finite rank in the trigonal system for lattices 
containing at least one staggered stacking vector (Bravais classes of  types [i,j]SkV 1 and [i]SkV t with k > O) 

and their settings for modulated periodic crystals 

All trigonal point groups are compatible with Bravais classes of 
type [i,J]SkV( If the Bravais class is [t]SkV t, one need only 
consider the point groups 3 and 3. Phases 

The structure and conventions are the same as for Table 3, 
except that the settings of the space groups for modulated crystals Gauge 
occupy parts Ill-V, corresponding to the three types of settings 
for the Bravais classes: P, R and ps. (The entries for P apply Equivalence 
equally well to the PI, P2, and Ps settings and those for ps apply 
equally well to ps, pSan d pSs. ) Classes 

The phases in part I for the gauge-equivalence classes are 
identical to those in Table 4 of LM giving the gauge-equivalence Phases 
classes for the rank-3 trigonal R lattice. 

II. When the point group is 3 or 32 and the lattice has no vertical 
stacking vectors, there are only symmorphic space groups (i.e. all 
phases can be taken to be zero). The table entries only apply when 
there is at least one vertical stacking vector. Phases 

When the point group is 3m or 3m, q~,,(c') denotes the nonzero 
phase associated with a stacking vector that can be taken to be 
either vertical or staggered if both possibilities are available. The 
simplest convention is to take it to be vertical whenever possible. 

We take the generator of the lattice of main reflections to be c ~ 
for the P settings, c~ for the R settings and c = 3d, - 2a - b for the 
ps settings, where a and h are the horizontal generating vectors 
associated with d,. In the ps settings the phase of the stacking 
vector for the lattice of main reflections is also assigned to two Phases 
satellite stacking vectors, cl~. and (c ~, -a ) ,  as noted in § IV.2. The 
ps settings are possible only in ranks greater than 4. 
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useful in the case when  the m o d u l a t e d  s t ructure  is a 
per iodic  crystal .  M o r e  general  (m + d) sett ings would  
be useful i f  one wished to describe weak m o d u l a t i o n s  
of  a general  quas iper iod ic  crystal  o f  r ank  m. We 
focus here on  the (3 + d) sett ings because these are 
cur ren t ly  t h e  ones o f  prac t ica l  impor t ance  and  
because this e n a b l e s  us to establ ish the re la t ion  o f  
our  own  a p p r o a c h  to tha t  o f  J JdW,  who  have  com- 
pu_ted the sett ings o f  the general  Bravais  classes for  d 
= 1 , 2 , 3 . *  

* The settings for the Bravais classes were derived using the 
superspace approach and appear in JJdW (1983) as '(3 + d) Bra- 
vais classes'. The associated 'superspace groups for modulated 
crystals' - the (3 + d) settings of the general space groups - have 
only been given for the (3 + 1) case (de Wolff, Janssen & Janner, 
1981). See also Janssen, Janner, Looijenga-Vos & de Wolff (1992). 

1. ,Settings of  the general Bravais classes 

A rank-3  sublat t ice,  serving as a lat t ice o f  ma in  
reflections, is i tself  e i ther  a t r igonal  or  a hexagona l  
(periodic)  latt ice and  as such must  include one  star  o f  
ho r i zon ta l  genera t ing  "vectors and  a single s tacking  
vector.  There  are three dist inct  possibil i t ies for  the 
s tacking vector  o f  ma in  reflections: (1) it can be a 
vertical  s tacking vector  f rom the full lattice; (2) it can 
be three t imes the vertical  par t  o f  a s taggered 
s tacking vector  o f  the full lattice; (3) it can  be a 
s taggered s tacking vector  o f  the full lattice. Cases (1) 
and  (2) have  P lattices of  ma in  reflections and  case 
(3) has R lattices. We dis t inguish  the settings o f  types 
(I)  and  (2) by cal l ing them P and  p s  settings, 
respectively. 
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In specifying, for any given Bravais class, which of  
the P, p s  and R settings can be realized and in how 
many  distanct ways, it is enough to consider Bravais 
classes of  type [i,j] since the settings of  a Bravais 
class of  type [i] are identical to those of  type [i,0].* 

Case (1): P settings. When the stacking vector of  
main reflections is a vertical stacking vector of  the 
full lattice, there can be up to three distinct choices 
for the star of  main reflections. If  the star is associ- 
ated with a staggered stacking vector, we have a Ps 
setting. If  it is not, then there can, in general, be two 
addit ional  settings, depending on which set of  stars 
the star of  main reflections is taken from. We denote 
the two settings P~ and / ' 2 ,  depending on whether the 
star of  main reflections is taken from the set specified 
by i or j in the [i,j] symbol.  When only one possibil- 
ity is available (i.e. when j = 0, or when i = j  and 
there are no staggered stacking vectors), the subs- 
cript may  be omitted. 

Case (2): ps settings. When the stacking vector of  
main reflections is three times the vertical part  of  a 
staggered stacking vector es of  the full lattice, the star 
of  main reflections can be from any horizontal  star 
of  the full lattice except the one associated with es. If  
the full lattice has a second staggered stacking vector 
es', then its associated star gives a setting we call P s  s. 
If the star of  main reflections is not  associated with 
another  staggered stacking vector, then, as in case 
(1), there are in general two settings, p s  and ps ,  
which may be denoted simply ps  when only one 
possibility is available. 

Case (3): R settings. The lattice of  main reflections 
can be an R lattice whenever the full lattice contains 
at least one staggered stacking vector. The star of  
main reflections must  then be the one uniquely 
associated with that  staggered vector and there is just  
one such setting. 

The settings are summarized in full generality in 
Table 6 and are listed in the third column of Table 2 
for all Bravais classes from ranks 4 to 7. 

2. Settings of  the general space groups 

Case (1): all point groups except 6mm and 6/mmm. 
These point  groups assign nonzero phases to only a 
single point-group generator.  

Case (1A): R and P settings. If the Bravais class of  
the main reflections is given by the R, PI, P2 or Ps 
setting of  the general Bravais class, then the stacking 
vector for the main reflections, whose phases must  
not  be altered by the t ransformat ions  that  establish 
scale equivalence, is one of  the vertical or staggered 
generating vectors of  the full lattice. Since the trans- 

* Whether the stars are all aligned (type [i,0]) or not aligned at 
all (type [i]) is irrelevant to the settings because in either case the 
only grounds for distinguishing among stars is whether or not they 
are associated with a staggered vector. 

Table 6. The (3 + d) settings of the hexagonal and 
trigonal Bravais classes [i,j] s k v  t of  rank i + j + k + l 

= 3 + d  

Definitions of the seven settings are given in §IV. 1. The settings for 
lattices of type [i]S k V t are the same as those for lattices of type 
[i,0]S * lit. The subscripts 1 and 2 can be omitted when a Bravais 
class only admits one of the two settings they distinguish. For a 
Bravais class to have all seven settings, we require k_  2, i _> 6, 
j___ 2 and l_  1, so the one of least rank with all seven is the 
Bravais class [6,2]S 2 V of rank 11. 

S e t t i n g s  C o n d i t i o n s  o n  [ i , j ]SkV t 

P1 

P2 

Ps 

R 

l > 0 ,  i > 2 k  

/ > 0 ,  j > 0 ,  i ~ j i f k = O  

/ > 0 ,  k > 0  

k > 0 ,  i > 2 k  

k > 0 ,  j > 0  

k > l  

k > 0  

format ions  that  act only on the satellite stacking 
vectors are entirely unrestricted, the analysis of  the 
phase functions associated with the satellite stacking 
vectors is identical to our analysis of  unrestricted 
scale equivalence that  led to the general space 
groups. In that  case, we found that  all but  a single 
stacking vector could be given zero phases. The 
analysis of  the restricted scale equivalence for that  
single satellite stacking vector and the stacking 
vector for the main reflections is then identical to the 
analysis we performed in the rank-4 case, leading 
directly to the settings given in parts III of  Tables 3 
and 4 and in parts III and IV of  Table 5. 

Case (1B): ps settings. If the Bravais class of  main 
reflections is given by the settings ps ,  p s  or p s _  
possibilities that  do not  arise in the rank-4 case - 
then the stacking vector for the main reflections is 
three times the vertical component  of  one of  the 
staggered stacking vectors Cs for the full lattice. If  a 
and b are the horizontal  generating vectors associ- 
ated with % then the stacking vector for the main 
reflections is 

c = 3Cs - 2 a  - b (2 )  

and among  the generating vectors for the satellites 
there are two with nonzero horizontal  components  
that  can be taken to be 

sl = cs, s2 = c s -  a. (3) 

Since the only nonzero phase Cs can have* is qSm(Cs) --= 
and since all phase functions vanish in the horizon- 

* See part I of Table 5. 
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tal plane, the possible phases of the stacking vector 
for the main reflections and these two generating 
vectors for the satellites are not independent: 

(Pro(C) ~ (~m(Sl)  ~ ~ m ( S 2 )  ~ 0 or I. (4) 

Note that in this case the phases available to c, the 
generating vector for a P lattice of main reflections, 
must be taken from the set of phases appropriate to 
the rank-3 R lattice. 

Having noted that q)m(c) is restricted by (4) and 
that its value entirely determines the phases at the 
satellite generating vectors Sl and s2, we can proceed 
with the remaining satellite stacking vectors just as 
we did for the other four settings, concluding that all 
but one of the remaining satellite stacking vectors 
can be assigned zero phases. 

When the point groups are 3 and 32, there are no 
nonvanishing mirror phase functions and the above 
complication does not arise. In this case, the settings 
of the space groups are exactly as given for the R 
settings: a nonzero phase can be associated with a 
single vertical satellite stacking vector, if one exists. 

When the point groups are 3m or 3m, then, in 
addition to the two possible values of the phases in 
(4), we need to consider the possible values of 0 or 
for the phase of a single additional stacking vector 
for the satellites, whether it is staggered or vertical.* 
These four possibilities yield only three settings, the 
one with both phases ½ being scale-equivalent to the 
one where the phases in (4) are ~ and the phase of the 
additional stacking vector is 0. 

The p s  settings of the space groups are summar- 
ized in part V of Table 5. 

Case (2): point groups 6mm and 6/mmm (only P 
settings are possible). When the point group is 6mm 
or 6/mmm, all stacking vectors are vertical, so the 
complications of the ps  settings do not arise, but 
now both q)r and q)m can be nonzero. Evidently, if 
there are just two stacking vectors, the settings are 
exactly as in the rank-4 case. When there are three or 
more, let c 1 be the one that indexes the main reflec- 
tions. Scale-equivalence transformations that act 
only on the remaining stacking vectors are entirely 
unrestricted and therefore the analysis of the scale- 
equivalence classes of phase functions associated 
with the remaining stacking vectors is identical to 
our analysis of unrestricted scale equivalence, which 
led to the phases that characterize the general space 
groups. Thus, we can index the satellites in such a 
way that at most two of the satellite stacking vectors 
c 2 and c 3 have nonzero phases and the possible 
choices for those phases are the same five sets that 
part II of Table 3 assigns to c ! and c 2 in the general 
space groups. 

* It would be simplest to choose it to be a vertical vector  if one 
is available. 

In four of those five sets, one of the two stacking 
vectors c 2 and c a is assigned zero phases. If we take 
that one to be c a, then, in determining restricted scale 
equivalence, we need only examine restricted scale- 
equivalence transformations that act on the stacking 
vector of main reflections c I and the satellite stacking 
vector c 2. But this is exactly the procedure we fol- 
lowed in LM to determine the settings for modulated 
crystals in the rank-4 case, where we found the ten 
settings listed in Table 5 of LM. These same sets of 
phases, with phases 0 assigned to c 3, form the first 
ten entries in the right-hand column of part III of 
Table 3. 

The eleventh entry arises from the fifth possible 
assignment of phases to the satellite stacking vectors 
c 2 and c 3, in which [~r, ~m] has the value [0,1] at c 2 
and [~,0] at c 3. The accompanying phases at the 
stacking vector of main reflections c 1 can indepen- 
dently have the full set of values [0,0], [0,~], [1,0] or 

I I [~,~]. The restricted scale-equivalence transformations 
allow us to add c a to either of the satellite stacking 
vectors c 2 or c 3 and to add one of c 2 or c 3 to the 
other. As a result, except when c I has both phases 0, 
we can again reduce the phase associated with one of 
the two satellite stacking vectors to zero, thereby 
establishing scale equivalence with one of the ten 
cases already listed. For each point group, there is 
thus only one additional setting beyond the ten we 
found in the rank-4 case. This is a setting of the fifth 
general space group in part II of Table 3. The setting 
has nonzero phases only at the two stacking vectors 
c 2 and c 3 and is listed as the last entry in part III of 
Table 3. 

V. Concluding remarks 

The conventional approach to the crystallographic 
classification of modulated materials relies on analyt- 
ical tools developed to describe real-space periodicity 
and treats quasiperiodic materials by embedding 
them in a higher-dimensional superspace where they 
can be viewed as three-dimensional slices of a peri- 
odic structure. Superspace crystallography therefore 
relies on the abstract algebraic formulation of crys- 
tallography necessary when dealing with periodic 
structures in more than three dimensions. As cur- 
rently formulated, it is also strongly biased toward 
quasiperiodic materials that are modulated crystals, 
because of the manner in which it performs the 
embedding. 

The Fourier-space approach permits one to retain 
the powerful tool of three-dimensional geometric 
intuition and is nonprejudicial among the different 
classes of quasiperiodic materials. It gives a scheme 
that is easier to derive and more generally applicable, 
from which the conventional categories of modulated 
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crystals can be reached as convenient settings for the 
general categories, useful in that special case. 

In this application of Fourier-space crystallogra- 
phy, we have given the classification of hexagonal 
and trigonal quasiperiodic crystals of arbitrary finite 
rank to demonstrate the power and simplicity of the 
approach. We have constructed the Bravais classes 
as an elementary geometrical exercise in three- 
dimensional space and have found the space groups 
associated with each Bravais class in a manner 
hardly more elaborate than that used in the rank-4 
case. In both the rank-4 and rank-n cases, the crucial 
part of the calculation has already been accom- 
plished when one derives, in their Fourier-space 
forms, the ordinary rank-3 crystallographic space 
groups. 

The specification of these results in a form tailored 
to the description of modulated crystals is simply a 
matter of listing the settings of the general space 
groups and Bravais classes. A crucial part of our 
simplification lies in not specializing to the 
modulated case (which breaks the symmetry of the 
problem by singling out a particular rank-3 sublat- 
tice for special treatment) until the end of the calcu- 
lation. While our results are equivalent to the 
conventional description of modulated crystals in all 
cases for which that description has been worked 
out, they apply to a much broader range of quasiper- 
iodic crystals, as well as to modulated crystals of 
arbitrary rank. 

This work was supported by the National Science 
Foundation through grants D M R  89-20979 and 
D M R  92-22792. 

APPENDIX 

Bravais classes of trigonal and hexagonal lattices of 
arbitrary finite rank 

We justify here the assertions made in §II about the 
Bravais classes of finite rank lattices with hexagonal 
or trigonal symmetry. When a lattice L in three 
dimensions has axial symmetry, it is conveniently 
characterized in terms of its two-dimensional sublat- 
tice H, perpendicular to the n-fold axis, and a 
modular lattice L/H of vectors defined only to within 
an additive vector of H. The notation reflects the fact 
that, if L is considered as an Abelian group under 
addition, then L/H is just the quotient group modulo 
the subgroup H. The rank of L is just the sum of the 
ranks of H and L/H. We refer to the generators of 
L/H as stacking vectors because the full lattice L can 
be viewed as a set of lattice planes given by shifting 
H by all integral linear combinations of the stacking 
vectors. 

Viewed as a two-dimensional lattice, the sublattice 
H can have the two-dimensional point group 6mm or 
6. In §A, we derive the Bravais classes of two- 
dimensional lattices of finite rank with point group 
6ram; in §B, we derive the Bravais classes when the 
point group is 6. In § C, we derive the ways in which 
these two-dimensional sublattices can be stacked to 
give the full three-dimensional lattice. 

A. Two-dimensional lattices with point group 6mm 

We first categorize a general two-dimensional lat- 
tice H of finite rank with 6mm symmetry in terms of 
a family of stars all with the same orientation. We 
then note that this description is equivalent to the 
[i,j] Bravais classes described in 511, based on fami- 
lies of stars with two distinct orientations. 

ld" A description with a single family o f  stars. Let 
an fi be unit vectors, 120 ° apart, on invariant lines 
of two vertical mirrors ma and mb. Expand a vector v 
in the lattice H as 

v = a ~  + / 3 6  (5) 

(with coefficients a and 13 that are not necessaril~ 
rational). Twice the projections of v onto h and b 
must also be in H, since they can be expressed as 

2 P a Y  = v + m a y  - -  (2a - /3)h ,  
(6) 

2Pbv = V + m/,v = (2 /3 -  a)fi. 

The subset Ha of H consisting of 2Pay for all v in H 
is a one-dimensional lattice of finite rank k (since the 
full lattice is of finite rank) and can therefore be 
primitively indexed by k of its vectors; i.e. one can 
choose k integrally independent lengths a (~), . . . ,  a (~) 
so that Ha consists of all integral linear combinations 
of the vectors al = a(l)h,... ,ak = a(k)~. By symmetry, 
Hb can be primitively generated by the vectors b~ = 
a(~)f~,... ,bk = a(k)f~. Note that two-dimensional lat- 
tices of rank 2k that differ only in the mutually 
incommensurate lengths a(l),... ,a (k) that characterize 
the primitive bases for the sublattices Ha and Hb are 
in the same Bravais class [for essentially the same 
reasons that two orthorhombic P lattices with differ- 
ent lattice constants (a, b and c) belong to the same 
Bravais class]. 

We can expand the vectors (6) in these bases for 
the one-dimensional sublattices: 

(2a - fl)h = niai = h, 
i = 1  i 

(7) 
(2/3  - a ) 6  - mib i  = F. m i a  ~i) 6.  

i = 1  \ i = 1  

Solving for a and /3 enables us to express the 
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original arbitrary vector v in H as 
k 

V = Z [(2ni + ~mi)ai + (lni + 2mi)bi], (8)  
i = l  

where all the ni and mi are integers. 
All vectors with integral coefficients for the a~'s 

and the b;s are in H, since they are sums of vectors 
in Ha and Hb. From (8), we learn that the lattice may 
also contain vectors whose coefficients are multiples 
of ~, as long as the sum of the coefficients of ai and b; 
for each i is an integer. It is convenient to restate this 
conclusion in the form it assumes when the axes are 
rescaled by a factor of three: 

Any two-dimensional hexagonal lattice of rank 2k 
and point group 6mm can be expressed as a set of 
integral linear combinations of k integrally indepen- 
dent parallel vectors, al,...,ak and their images under 
a 120 ° rotation, bl,...,bk, where: (1) for each i the sum 
of the coefficients of a~ and bi is a multiple of three; 
(2) vectors with all coefficients multiples of three are 
in the lattice and constitute a sublattice, He. 

The two-dimensional hexagonal lattices with point 
group 6mm can therefore be viewed as the transla- 
tions through all vectors of the sublattice Hp of a 
finite set of vectors Ho, which can contain only 
vectors whose coefficients for each pair of generators 
a~ and b~ are 00, l i ,  or i l.* Ho is the modular 
latticei- H/He; it is closed under addition and sub- _ 
traction modulo the lattice He (i.e. when arithmetic 
is performed on its components modulo 3) as a 
consequence of the closure of the full lattice under 
ordinary addition and subtraction. Since all sublat- 
tices He of the same rank are in the same two- 
dimensional Bravais class, classifying these two- 
dimensional lattices into Bravais classes reduces to 
classifying the corresponding modular lattices. 

2. Proof by induction that all Bravais classes of 
two-dimensional hexagonal lattices with 6mm sym- 
metry are of type [i,j]. Note first the elementary geo- 
metrical fact that a pair of star vectors with a 
three-element modular lattice (00, 1T and 71) gener- 
ate exactly the same rank-2 lattice as a pair of star 
vectors rotated through 30 ° and scaled down by 31/2, 
with a modular lattice containing only 00. As a 
result, to establish the validity of the description in 
§II of the horizontal sublattice in terms of two 
families of star vectors at 30 °, we need only show 
that a basis of identically oriented star-generating 
vectors can be chosen for He, in terms of which the 
modular lattice Ho reduces to a sum of modular 
lattices (each consisting of either 00 alone or the 
three vectors 00, 1]- and 11) associated with each pair 
am, bm. 

* It is convenient to write T for - 1. 
t Modular  lattices were used in a similar manner  to enumerate 

Bravais classes o f  quasiperiodic crystals by Mermin & Lifshitz 
(1992). 

This is trivially the case when the rank is 2, since 
there is then only one pair a, b. Suppose it has been 
established for rank 2k. Then, with a modular lattice 
Ho of rank 2(k + 1) it is possible to choose the first k 
pairs am, bm so that the sublattice of Ho spanned by 
them is of type [i,j] (i.e. Ho is the sum of j three- 
element modular lattices). If the (k + 1)th pair ak+ 1, 
bk+l does not appear in the expansion of any ve.ctor 
of Ho, then H0 is of type [i + 2,j]. Otherwise there 
must be at least one vector in Ho of the form u + 
ak + 1 -- bk + 1, where u is a vector spanned by only the 
first k pairs of generating vectors. It follows that Ho 
must be the sum of a modular lattice of type [i,j], 
with a three-element modular lattice that can be 
taken to be [0, u + ak+l - bk+l, --U -- a k + l  + bk+ ~]. 
If u is zero, then Ho is of type [i,j + 2]. If u is not 
zero, then define 

a~:+l =ak+l  +-~Pau, b~,+l = b k + l - -  ~Pbu. (9) 

Because u has components 0, 11 or 11 along each of 
the first k pairs of star vectors, - Pbu is simply a 120 ° 
rotation of Pau, and a~ + 1 and b~ + 1 are an alternative 
pair of primitive star vectors for H. Since (2/3) (PaU 
+ Pbu) = U, the three-element modular lattice 

r t t t becomes [0, ak+l -- bk+l, --ak+l + bk+l] and Ho is 
again of type [i,j + 2]. 

B. Lattices with point group 6 

If the two-dimensional point group is only 6, we 
must show that the lattice can be primitively gener- 
ated by pairs of vectors of equal length, separated by 
120 °. Such a lattice of finite rank i belongs to the 
Bravais class [i] described in §II. 

Let a' be a vector in H and let b' = ra' be its image 
under a 120 ° rotation r. Consider the sublattice H2 of 
H consisting of all points that are rational linear 
combinations of a' and b'. Because H has finite rank, 
so does /-/2, which can therefore be indexed by a 
finite number of its vectors. Because all such vectors 
are rational linear combinations of a' and b' and 
because they are finite in number, they can all be 
expressed as integral linear combinations of two 
rational linear combinations of a' and b' (with suffi- 
ciently large denominators). Therefore, /-/2 has rank 
2. Because it also has sixfold symmetry it can only be 
a triangular lattice and can therefore indeed be 
expressed as all integral linear combinations of two 
vectors a and b of equal length, 120 ° apart. 

We take a and b to be members of a set of 
generating vectors for the full lattice H. If we expand 
every vector of H in this set and drop the two terms 
in which a and b appear, we get a sublattice of H of 
rank two less than H for which we can repeat the 
above procedure. Since H is of finite rank, successive 
repetitions will yield a complete set of primitive 
generating vectors for H composed of pairs of vec- 
tors of equal length 120 ° apart. 
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C. The s tacking vectors 

Because the full lattice L is closed under addition 
and subtraction, any plane of vectors parallel to the 
horizontal sublattice H must consist of H itself, 
shifted by a vector with a nonzero component along 
the axis of three- or sixfold symmetry. A set of 
primitive generating vectors for L consists of a set of 
primitive generating vectors for H and a set of 
stacking vectors that can be regarded as primitive 
generating vectors for the modular  lattice L/H.  

To establish that the stacking vectors can be taken 
as specified in §II, note first that the projection of L 
into the horizontal plane, P, is a two-dimensional 
lattice with sixfold symmetry that contains H. If P = 
H, then no stacking vectors need horizontal com- 
ponents. Staggered stacking vectors - fhose which 
necessarily have nonzero horizontal components - 
are only required if P has vectors not in H. The 
horizontal parts of such staggered stacking vectors 
can be specified by a modular lattice Po = P/H. The 
projected lattice P is given by the translations of P0 
through all the vectors of H and Po is itself a lattice 
under addition modulo H. The rank of Po as a 
modular  lattice is the number of independent stag- 
gered stacking vectors. 

We must show that a set of generators can be 
found for Po (which generate Po under arithmetic 
modulo H) and for H such that each generator of Po 
has the form 

1 
h = ~ao + ~ra0, (10) 

where ao and ra0 are a pair of primitive generators of 
H, r being a 120 ° rotation. For each such h E Po, 
there is a staggered stacking vector c + h among the 
primitive generators of L, which establishes our 
claim in §II. 

To establish (10), note first that if v is any vector 
of L with vertical and horizontal components c and 
h, then threefold symmetry requires H to contain 

a = (1 - r)v = (1 - r)h.  ( 1 1 )  

H also contains 

(1 - r2)a = (1 - r2)(1 - r)h = 3h, (12) 

the last identity following from the fact that 1 + r + 
r 2= 0 in the plane. Thus, vectors in P that differ by 

multiples of 3h are equivalent modulo H, as are 
vectors in P related by a 120 ° rotation. Conse- 
quently, Po consists of the integral linear combina- 
tions with coefficients 1, 0 and - 1 of  a finite number 
of incommensurate vectors h~ . . . .  , hi. 

According to (12), any of these generators of Po 
has the form 

h = ~ ( a -  rZa)= ~a + ~(ra). (13) 

If a and ra are among the primitive generating 
vectors of H, then h has indeed the desired form (10). 
If a and ra are not among the primitive generators of 
H, then we can express them as integral linear com- 
binations of a pair of primitive generating vectors, ao 
and rao:* 

a = lao + m(rao), 
(14) 

ra = - m a o  + ( l -  m)(ra0). 

In terms of the primitive generating vectors 

h = [ (2 l -  m)/3]a0 + [(l + m)/3](rao)=pao + q(rao). (15) 

Since p + q is an integer, while p and q themselves 
are not (since h is not in H), there must be integers j 
and k such that 

p = j  + ~, q = k -7,- ~, (16) 

so that modulo H we can take h to be 

h = - ~ao + ~rao. ( 1 7 )  

If we shift this by ao, we arrive at the desired form 
(lO). 

* We find ao and rao by examining the rank-2 sublattice of  all 
points in H that are rational linear combinations of  a and ra, as we 
did in §B above. 
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